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Neutral lipid storage disease: a genetic disorder
with abnormalities in the regulation of

phospholipid metabolism

R. Ariel Igal and Rosalind A. Coleman?

Departments of Nutrition and Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

Abstract Neutral lipid storage disease (NLSD) is an autoso-
mal recessive disorder characterized by the presence of nu-
merous lipid droplets in virtually all tissues examined. The in-
creased cellular triacylglycerol content results from defective
recycling of triacylglycerol-derived diacylglycerol to phospho-
lipids (lgal, R. A. and R. A. Coleman. 1996. J. Biol. Chem. 271:
16644-16651). In order to determine whether de novo glycer-
olipid synthesis is also altered in NLSD, we compared the abil-
ity of normal human skin fibroblasts and fibroblasts from a
patient with NLSD to incorporate phospholipid precursors
into cell lipids. NLSD cells had increased rates of incorpora-
tion of [1C]oleic acid and [3H]glycerol into triacylglycerol
and all phospholipid species except phosphatidylethanola-
mine. However, the cell content of each phospholipid species
was similar in control and NLSD cells, indicating a higher
turnover rate in NLSD cells for phosphatidylcholine, phos-
phatidylinositol, phosphatidylserine, and sphingomyelin. La-
beling with [**C]choline and [**C]ethanolamine confirmed
the increase in the rate of phosphatidylcholine synthesis and
the decreased rate of phosphatidylethanolamine synthesis
through their respective CDP pathways. The activities of the
major regulatory enzymes of triacylglycerol, phosphatidylcho-
line, and phosphatidylethanolamine biosynthesis were similar
in control and NLSD cells.fill Taken as a whole, this study pro-
vides strong evidence for an underlying regulatory defect in
NLSD that alters the rates of synthesis and degradation of the
major cellular phospholipids.—Ilgal, R. A., and R. A. Cole-
man. Neutral lipid storage disease: a genetic disorder with ab-
normalities in the regulation of phospholipid metabolism. J.
Lipid Res. 1998. 39: 31-43.
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Neutral lipid storage disease (NLSD), also known as
Dorfman-Chanarin syndrome, is an autosomal reces-
sive disorder characterized by a large accumulation of
triacylglycerol droplets in most tissues examined, in-
cluding liver, muscle, intestinal mucosa, neutrophils,
and skin fibroblasts (1). Although the triacylglycerol
droplets, which are not membrane-bound, had been

thought to result from a defect in triacylglycerol lipoly-
sis (2), our studies with triacsin C, a competitive inhibi-
tor of acyl-CoA synthetase, demonstrated that triacyl-
glycerol (TAG) accumulates in cells because of a defect
in the recycling of TAG-derived diacylglycerol as a sub-
strate for phospholipid synthesis (3).

Phospholipids are essential structural components of
intracellular membranes and the plasma membrane
and form a precursor pool for the generation of lipid
second messengers such as diacylglycerol, the eicosa-
noids, phosphatidic acid, and platelet activating factor.
As such, it is critical to understand how cells regulate
the synthesis of each of the individual phospholipids as
well as the fatty acid species esterified to these phos-
pholipids. A genetic defect like NLSD provides a cellu-
lar model of disturbed complex lipid metabolism that
can shed light on the normal regulation of phospho-
lipid synthesis. Because it was unclear whether the
NLSD defect lies in recycling triacylglycerol-derived di-
acylglycerol to one specific phospholipid or to all phos-
pholipids, and whether the defect is manifested in both
recycling and de novo synthetic pathways, we examined
the de novo synthesis of the major phospholipid spe-
cies in NLSD and control fibroblasts from labeled ole-
ate, glycerol, choline, and ethanolamine.

Abbreviations: BSA, bovine serum albumin; CT, CTP:phospho-
choline cytidylyltransferase; DCPT, diacylglycerol cholinephospho-
transferase; DEPT, diacylglycerol ethanolaminephosphotransferase;
DGAT, diacylglycerol acyltransferase; EMEM, Eagle’s minimal essen-
tial medium plus 1% nonessential amino acids; ET, CTP:phosphoeth-
anolamine cytidylyltransferase; FBS, fetal bovine serum; NLSD, neu-
tral lipid storage disease; PBS, phosphate-buffered saline; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphati-
dylinositol; PS, phosphatidylserine; TAG, triacylglycerol; TCL, thin-
layer chromatography.

1To whom correspondence should be addressed.

2DAG concentrations were virtually identical in NLSD and control
cells (J-H. Kim, K. A. daCosta, and R. A. Coleman, unpublished data).
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This report describes in NLSD fibroblasts: 1) a
higher rate of incorporation of radiolabeled oleic acid
and glycerol into TAG and all major phospholipid spe-
cies except PE; 2) a higher turnover rate of PC, PI, PS,
and sphingomyelin; 3) stimulated PC synthesis and de-
creased PE synthesis through their respective CDP-
pathways; and 4) normal catalytic activities of the likely
regulatory enzymes of triacylglycerol, PC, and PE bio-
synthesis. Taken as a whole, this study provides strong
evidence for an underlying regulatory defect in NLSD
that alters the rates of synthesis and degradation of the
major cellular phospholipids.

EXPERIMENTAL PROCEDURES

Materials

[1-14C]oleic acid and [2-3H]glycerol, CDP-[*C]
choline, and CDP-[1*C]ethanolamine were from Amer-
sham Life Sciences Co. [*C-methyl]choline, [1,2-14C]
ethanolamine hydrochloride, phospho-[1*C]choline,
and phospho-[3H]ethanolamine were from American
Radiolabel Company. [2H]palmitic acid was from New
England Nuclear. Tissue culture media and supplies
were purchased from Gibco BRL. TLC Plates were from
Whatman. Choline, ethanolamine, and sodium oleate
were from Sigma. Lipid standards and sn-1,2-dioleoyl-
glycerol were from Serdary. Bovine serum albumin (es-
sentially fatty acid-free) was from ICN.

Cell culture

Normal human skin fibroblasts (ATCC Collection,
cell line CCD) and fibroblasts from a child with NLSD
(1) were routinely grown in Eagle’s Minimum Essen-
tial Medium with Earle salts plus 1% nonessential
amino acids (E-MEM) supplemented with heat-inacti-
vated FBS (10%), penicillin (100 U/ml), and strepto-
mycin (100 wg/ml) in a humidified incubator with 5%
CO, at 37°C.

Oleic acid and glycerol labeling

Normal and NLSD cells were cultured in 60-mm
dishes until near confluence. Fibroblasts were incu-
bated for 24 h either with [**C]oleic acid (0.25 wu.Ci/
dish) or [*H]glycerol (4 w.Ci/dish) in the presence of
100 pm Na oleate dissolved in 10% FBS, EMEM, 1%
BSA. At the end of the labeling period, the radioactive
media were discarded and residual label was removed
by washing the monolayer three times with a solution
of 0.1% BSA in PBS at 37°C. Cells were scraped from
the dishes in two additions of 1 ml CH;OH and 1 ml
water. Total lipid from both cell lines was extracted (4).
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Metabolism of [*C]choline or [**C]ethanolamine by
NLSD and control fibroblasts

Near-confluent NLSD and control fibroblasts in 100-
mm dishes were incubated with 2 wCi/dish of
[**C]choline or [1*C]ethanolamine in either 10% FBS
(which adds about 60 um choline as PC), EMEM
(which contains 7 um choline and no ethanolamine),
or in RPMI 1640 (which contains no choline or etha-
nolamine) in the absence or presence of 0.5 mm Na
oleate in 1% BSA. After a 2-h incubation, the labeling
media were aspirated and cells were washed three
times with 0.1% BSA in PBS, and scraped from the
dishes in two additions of 3 ml CH3;OH and then 1.5
ml water. Finally, 3 ml of CHCI; was added to the com-
bined solvents and total lipids were extracted (4). The
aqueous phases were saved for analysis of water-soluble
metabolites.

Pulse-chase labeling of fibroblasts with [14C]choline
or [C]ethanolamine

In pulse-chase experiments, control and NLSD fi-
broblasts grown in 100-mm dishes were pulsed for 24 h
with either [C]choline or [**C]ethanolamine (2
pCi/dish) in 10% FBS, EMEM supplemented with 50
pM choline or ethanolamine. The prelabeled cell
monolayers were washed three times with 0.1% BSA in
37°C PBS in order to eliminate residual label. Fibro-
blasts were then chased in 10% FBS, EMEM. Aliquots
of the chase media were counted in order to quantify
the radioactive metabolites released. Total lipids were
extracted as above (4), and the aqueous phases were
saved for analysis.

TLC analysis of lipids and aqueous metabolites

Neutral and polar lipid species were separated on silica
gel 0.25-mm 150A LK50 plates using a one-dimensional
double-development procedure. The chromatoplate
was first run in chloroform-methanol-30% ammo-
nium hydroxide 65:25:4 (v/v/v) to 8 cm from the top.
After evaporating residual solvents with a N, stream,
the plate was rerun in heptane-isopropylether—glacial
acetic acid 60:40:4 (v/v/v) to the top of the plate. Pure
lipid standards were run in parallel. To separate Pl and
PS, which were not resolved by this solvent system, the
spot corresponding to Pl and PS was scraped and ex-
tracted from the silica gel with CHCI;—CH3;OH 1:1 (v/V).
Lipids were concentrated and respotted on a new TLC
plate. Pl was separated from PS by chromatography
with CHCI,-CH;OH-CH,COOH-H,0 85:15:10:3 (v/
v/v/v). For cells labeled with [%C]ethanolamine,
[*4C]diacyl-PE and [**C]plasmalogen-PE were separated
by spotting one-half of the total lipid sample on a silica
gel plate and exposing the plate to concentrated HCI
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vapor for 20 min to hydrolyze vinyl ether bonds while
preserving ester bonds. The remainder of the sample
was then spotted on a separate lane. When the plate
was run in CHCIl;—CH;OH-30% NH,OH 65:25:4 (v/v/
v) the former alkenyl, acyl-PE moved to a spot similar to
that of lyso-PE. To separate agueous metabolites of cho-
line and ethanolamine, the aqueous phases were
dried and dissolved in H,O, spotted on silica gel plates,
and chromatographed with 0.6% NaCl-CH;OH-30%
NH,OH 50:50:5 (v/v/v). Carrier standards were added
to the samples before the chromatography. All 4C-
labeled lipids and water-phase metabolites were detected
and quantified using a Bioscan Image 200 System. 3H-
labeled lipids were visualized with iodine vapor,
scraped into vials, and counted.

Cell phospholipid content

Near confluent control and NLSD fibroblasts, grown
in 100-mm dishes, were scraped in two additions of 3
ml CH;OH, then 1.5 ml H,O. Total lipids were ex-
tracted and the phospholipids were separated as de-
scribed above. Areas corresponding to each phospho-
lipid were scraped into glass tubes and lipids were
extracted with ether-CHCI;-CH;OH 3:1:2 (v/v/V).
Phosphate was measured by the method of Bartlett (5).

Preparation of subcellular fractions and enzyme assays

Near-confluent control and NLSD cells, grown in 150-
mm dishes, were washed twice with ice-cold PBS (or
0.9% NaCl when samples were required for phosphati-
date phosphohydrolase assay) and scraped into 5 ml of
the same solution (twice). The cells were pelleted by
centrifugation and the pellet was resuspended in 2 ml of
10 mm Tris-HCI, pH 7.4, 1 mm EDTA, 0.25 m sucrose.
The fibroblasts were homogenized with 30-40 strokes of
a motor-driven Teflon-glass homogenizer and centri-
fuged at 100,000 g for 1 h. The supernatant was used as
a cytosolic fraction and the pellet (total particulate prep-
aration) was resuspended in the same buffer. Both frac-
tions were stored in aliquots at —80°C until used. Pro-
tein was measured using serum bovine albumin as the
standard (6). CTP:phosphoethanolamine cytidylyltrans-
ferase was measured in the cytosolic fraction with 10 to
20 ug protein, 100 pum [*H]phosphorylethanolamine
and 40 pm CTP (7). CTP:phosphocholine cytidylyltrans-
ferase was assayed using 10 to 30 p.g of either cytosolic or
total particulate protein and 4 mm [**C]phosphocho-
line, 5 mm CTP, 50 pm PC, and 50 um oleic acid (8). Dia-
cylglycerol cholinephosphotransferase and diacylglyc-
erol ethanolaminephosphotransferase were assayed using
25 to 100 pg of total particulate protein with 100 pm
CDP-[**C]choline (10 wCi/pmol) or 100 um CDP-
[14C]ethanolamine, respectively, and 100 pm sn-1,2-
dioleoylglycerol in acetone (9). Acyl-CoA synthetase was

lgal and Coleman

assayed using 10 to 30 pg of total particulate protein, 50
um [HCloleate or [3H]palmitate, 10 mm ATP, and 0.2
mm CoA (10). Acyl-CoA hydrolase was measured using
50 um [BH]palmitoyl-CoA and 5 to 15 g of total particu-
late protein (11). Diacylglycerol acyltransferase activity
was determined using 5 to 25 p.g of total particulate pro-
tein, 200 pw™m sn-1,2-dioleoylglycerol in acetone, and 30
pum [BH]palmitoyl-CoA (12). Choline kinase was mea-
sured using 10-30 g cytosolic protein, 10 mm ATP, and
1 mm [*C-methyl]choline (13). Assays were propor-
tional to the amount of protein used.

Other methods

DNA content was determined fluorometrically, using
calf thymus DNA as the standard (14). For each point,
DNA was measured in three separate dishes. [?H]palm-
itoyl-CoA was synthesized enzymatically (15).

RESULTS

NLSD cells incorporate more oleate into neutral lipids
and all phospholipids except PE

NLSD cells incorporated more ['C]oleic acid into
total cellular lipids than did control cells (Fig. 1A). The
increase was observed as early as 3 and 6 h (23 and 54%
more, respectively) and was 78% more than control
cells at 24 h. The enhanced formation of oleate-labeled
TAG by NLSD fibroblasts was also observed as early as 3
h (24% more), increasing to 72% at 6 h and 2.5-fold at 24
h. Incorporation of [*4CJoleate into the non-esterified
fatty acid fraction was similar in control and NLSD fi-
broblasts (data not shown).

The initial incorporation of [14CJoleate into total polar
lipids was increased in NLSD cells at early time points
(23% at 3 h and 37% at 6 h), but became similar by 24
h (Fig. 1B). Analysis of the individual phospholipid spe-
cies showed that [14C]oleate incorporation into PC in-
creased 27% by 6 h, but was equal in NLSD and control
cells by 24 h. In contrast to other phospholipids that
showed increased labeling at both early and late time
points, incorporation of [14C]oleate into PE by NLSD
cells was equivalent to control cells at early time points
and 20% less at 24 h (Fig. 1C). Unlike the small
changes observed with [14CJoleate incorporation into
PC and PE, NLSD fibroblasts incorporated 50% more
[*4C]oleate into PI1/PS at all time points. Higher values
were also observed at 3 (110%) and 6 h (82%), and
persisted at 24 h (30%). Analysis of the radiolabeled
P1/PS fractions from several experiments showed that
70-90% of the label was in Pl and that PS was a minor
constituent (10-30%) (data not shown). Increased la-
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Fig. 1. Incorporation of [1*C]oleic acid into total lipids, TAG, and PL in control and NLSD fibroblasts. Cells were incubated with 100 um
[**C]oleic acid in 1% BSA, 10% FBS, EMEM. Lipids were extracted and chromatographed as described in Experimental Procedures.
Data points represent the means + SD of an experiment performed in triplicate. Some error bars are smaller than the symbols. A)Total
lipids (circles) and TAG (triangles); B) total phospholipid (circles) and PC (triangles); C) PE (squares) and P1/PS (triangles); D: sphin-
gomyelin (squares). Inset: 1 to 24 h values. Labels: Control (open symbols, solid lines), NLSD (closed symbols, dashed lines). The data

are representative of three experiments, each performed in triplicate.

beling was observed in both Pl and PS (2- to 8-fold) in
NLSD cells compared to control cells. NLSD cells also
incorporated more [“CJoleate into sphingomyelin
throughout the entire time period (Fig. 1D). By 24 h,
NLSD cells contained more than twice as much labeled
sphingomyelin as did control cells.
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NLSD cells incorporate more glycerol into neutral lipid
and all phospholipids except PE

Incorporation of labeled fatty acid into a phospholipid
can occur via de novo synthesis from glycerol-3-P, from
reacylation of the analogous lysophospholipid, or from

2102 ‘vT aunr uo “1sanb Aq Bio 1|l mmm woly papeojumoq


http://www.jlr.org/

ASBMB

JOURNAL OF LIPID RESEARCH

I

recycling of diacylglycerol derived from triacylglycerol. In
contrast, incorporation of labeled glycerol represents de
novo synthesis alone and can help distinguish among
these possibilities. Incorporation of [3H] glycerol con-
firmed the results observed with [*C]oleate, indicating
that the differences observed with oleate represented, at
least in part, differences in de novo synthesis. NLSD cells
incorporated more [*H]glycerol into total lipids at 3 h
(46%) and 24 h (93%) compared to control cells (Fig.
2A). As with [*C]oleic acid, 50% of the total [3H]glyc-
erol incorporated was present in TAG in both cell lines
after 1 h of incubation, but in NLSD cells the percentage
of glycerol incorporated into TAG continued to increase.
[BH]TAG was 44% and 67% higher in NLSD cells at 3
and 6 h, respectively, and by 24 h, [BH]TAG was 3-fold
higher in NLSD cells than in controls.
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Similar to the [**CJoleate incorporation studies, the de
novo synthesis of total phospholipids from [*H]glycerol
(Fig. 2B) was 48% higher in NLSD cells at 3 h, but de-
creased to 16% by 6 h, and was similar in the two cell lines
by 24 h (Fig. 2, inset). Analysis of individual phospholipid
species showed that, similar to the oleate studies, NLSD
cells incorporated 39 and 18% more label into PC at 3 h
and 6 h, respectively but that this difference did not per-
sist at 24 h. NLSD cells incorporated twice as much
[*H]glycerol into PI/PS at 3 h compared to control cells
(Fig. 2C). The difference declined to 50% at 6 h, and by
24 h, incorporation was equivalent in the two cell lines.
Normalization of label incorporation suggests an in-
creased rate of PC, PI, and PS turnover in NLSD cells. In
contrast, [3H]glycerol incorporation into PE was 25%
lower in NLSD cells at 6 h and 30% lower at 24 h, com-
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Fig. 2. Incorporation of [3H]glycerol into total lipids, TAG, and
PL in control and NLSD fibroblasts. Cells were incubated with
[3H]glycerol (2 nCi/dish) supplemented with 100 um Na oleate
in 10% FBS, EMEM. At each timepoint, lipids were extracted and
chromatographed as described in Experimental Procedures. Data
points represent means = SD of an experiment performed in trip-
licate. Some error bars are hidden by the symbols. A) Total lipids
(circles), TAG (triangles); B) total phospholipid (circles) and PC
(triangles); C)PE (squares) and P1/PS (circles). Insets: 1 to 24 h
values. Labels: Control (open symbols, solid lines), NLSD (closed
symbols, dashed lines). The data are representative of three ex-
periments performed in triplicate.
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Fig. 3. Incorporation of [3H]glycerol and ['4C]oleate into dia-
cylglycerol. Cells were incubated with both 100 uwm [*4C]Joleic acid
in 1% BSA, 10% FBS, EMEM and [3H]glycerol (2 pn.Ci/dish). At
each timepoint, lipids were extracted and chromatographed in
heptane-isopropyl ether—glacial acetic acid 60:40:4 (v/v) with sh-
1,2- and 1,3-DAG as carrier and standards. Data points represent
means = SD of an experiment performed in triplicate. Some er-
ror bars are hidden by the symbols.

pared to the control cells (Fig. 2C). This decrease had
been observed with oleate-labeling only at 24 h (Fig. 1C).

Incorporation of [*4CJoleate and [3H]glycerol
into diacylglycerol

A double label experiment was used to determine
whether there might be differences in the synthesis of
the intermediate diacylglycerol (DAG) from acylation
and de novo pathways. Although very little DAG is
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Fig. 4. Incorporation of [1*C]choline into aqueous- and lipid-
soluble metabolites in the absence and presence of 0.5 mm oleic
acid. Control and NLSD fibroblasts were incubated with 2 u.Ci/
dish [methyl-1*C]choline for 2 h in the presence or absence of 0.5
mm Na oleate in 1% BSA, 10% FBS, EMEM. Labeled water-soluble
metabolites and total lipids were extracted and separated by TLC
as described in Experimental Procedures. Each bar expresses the
average of measurements from two 100-mm dishes. Panels: A)
[**C]choline; B) [**C]phosphocholine; C) [1*C]CDP-choline;
and D) [*C]PC. The basal data are representative of five experi-
ments, each performed in duplicate. The data with oleate are
from a single experiment. Variation between the duplicates was
less than 5%.

present in fibroblasts, NLSD cells incorporated more
[**C]oleate into 1,2- and 1,3-DAG at each time point
(Fig. 3A). Similarly, the [¥H]glycerol labeling of 1,2-
and 1,3-DAG by NLSD cells was 50% or even higher
than in control at any single time point (Fig. 3B). The
amounts of labeled DAG in NLSD cells do not appear
to plateau like those in control cells at 6 h of incuba-
tion; however, these two fractions represented only a
small percentage of the total lipid labeling.
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Increased PC and decreased PE formation by
the CDP-choline and CDP-ethanolamine pathways

Because the [3H]glycerol studies, examining de novo
synthesis, suggested that NLSD cells incorporate more
fatty acid and glycerol into PC, PI1/PS, and sphingomye-
lin and less into PE than do control cells, we examined
the incorporation of [**C]choline and [!4C]ethanol-
amine into cellular lipids. When near-confluent cells
were incubated with [14C]choline for 2 h, NLSD cells
incorporated 75% more label into lipid than did con-
trol cells (Fig. 4D). Ninety-eight percent of this [14C]
choline-labeled lipid was PC (data not shown). Very lit-
tle free cellular choline was present (Fig. 4A), but total
incorporation of [1*C]choline into aqueous plus lipid-
soluble products was 60% higher in NLSD cells. As has
been reported for other cultured cell lines (16-18),
most of the label present in water-soluble metabolites
was phosphocholine, and NLSD cells accumulated 62%
more phosphocholine than did the control fibroblasts
(Fig. 4B). [C]CDP-choline, which represented less
than 1% of the aqueous metabolites, was 46% lower in
NLSD cells than in controls (Fig. 4C).

Fatty acids cause CTP:phosphocholine cytidylyltrans-
ferase (CT), the rate-limiting enzyme of PC synthesis,
to translocate from the cytosol to membranes where it
is activated (19). Because NLSD cells incorporated
more oleate, glycerol, and choline into PC than did
control cells, we studied the effect of oleate on PC for-
mation in order to determine whether PC synthesis was
regulated normally by fatty acid. When 0.5 mm sodium
oleate was added into the labeling media, incorpora-
tion of [14C]choline into PC increased about 3.3-fold in
both control and NLSD cells (Fig. 4D). In addition, the
presence of oleic acid in the incubation media stimu-
lated by 30% the total incorporation of choline into
lipid plus aqueous metabolites in both cell lines (data
not shown). Oleate did not alter the low amount of free
[*4C]choline (Fig. 4A) in the cells, but the amount of
[**C]phosphocholine decreased 80% in both cell lines
(Fig. 4B), and [**C]CDP-choline formation increased

TABLE 1. Quantification of phospholipid species
in NLSD and control cells

Control NLSD
wg phospholipid/ g phospholipid/
Phospholipid mg protein % mg protein %
P1/PS 19.0 £ 2.9 10.8 11.9 £ 0.9 8.0
PE 54.8 + 3.3 311 48.1 = 3.1 32.2
Sphingomyelin 43*+04 2.4 <0.53 <04
PC 98.4 +58 55.8 89.0 £ 6.3 59.5

Lipids from five 100-mm dishes of NLSD cells and five of control
cells at near confluence were extracted, separated by TLC, and ana-
lyzed by phosphorous content as described in Experimental Proce-
dures. Results given as mean =+ SD.

50-fold in control cells and 100-fold in NLSD cells (Fig.
4C). These results are consistent with normal fatty acid-
induced activation of CT, thereby enhancing conver-
sion of phosphocholine to CDP-choline (17, 20). Thus,
in addition to the constitutive increase of PC synthesis
in NLSD cells, it appears that CT activity can be addi-
tionally stimulated.

Ethanolamine glycerolipids represent 20-30% of the
total phospholipid present in most mammalian cells,
including CCD fibroblasts (human) and fibroblasts
from our NLSD patient (Table 1). Synthesis of diacyl-
PE can occur via three different routes: DCPT conden-
sation of CDP-ethanolamine and diacylglycerol, decar-
boxylation of PS, or CaZ*-dependent base exchange
with free ethanolamine. When sufficient ethanolamine
is available, the major route of PE synthesis in mamma-

800~ < 12,000
£~ 600} \ £ §
EZ § E:ZE 8,000 §
2A N | 28 \
£ 2400 § S \
5 N | £ \
SE \ 55 4,000 \
= 7 200 \ g N
s |
i N
C NLSD C NLSD
600 2,500
3 |
4 2,000
%gﬂ 400 2 '
Za = Z 1,500
2y O &
28 T 1,000
9‘% 200 _‘_g.
Ov N’
= 500

C NLSD C NLSD

Fig. 5. Incorporation of [14C]ethanolamine into water-soluble
metabolites and PE. Control and NLSD fibroblasts were incu-
bated with 2 wCi/dish of [*4C]ethanolamine for 2 h in 10% FBS,
EMEM. Aqueous and CHCI; phases were extracted and chro-
matographed as described in Experimental Procedures. Each bar
represents the means = SD for three 100-mm dishes. Panels:
A) [!C]ethanolamine; B) [**C]phosphoethanolamine; C)
[*C]CDP-ethanolamine; and D) [*C]PE. The data are represen-
tative of five experiments.
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lian cells occurs via the CDP-ethanolamine pathway
(7). Because NLSD cells incorporated less [3H]glycerol
into PE than did the control cells (Figs. 2 and 5), we ex-
amined the CDP-ethanolamine pathway of PE forma-
tion. More than 95% of the total labeled lipid was PE in
both control and NLSD fibroblasts incubated with
[*4C]ethanolamine for 2 h (data not shown), but NLSD
cells incorporated 35% less [14C]ethanolamine into PE
than did control cells (Fig. 5D). Although the total la-
beling of water-soluble metabolites was 15% higher in
NLSD cells, the distribution of the three main water-
soluble metabolites differed in the two cell lines. Free
[*4C]ethanolamine and ['*C]phosphorylethanolamine
were 42% and 15% higher in NLSD cells, respectively,
than in control cells (Fig. 5A, B), whereas CDP-[14C]
ethanolamine was 45% lower (Fig. 5C).

A decrease in CDP-[*4C]ethanolamine and [1*C]PE
synthesis could indicate a partial block in the conver-
sion of phosphoethanolamine to CDP-ethanolamine by
the ethanolamine cytidylyltransferase (ET) and explain
the decreased rate of synthesis of PE in NLSD fibro-
blasts. In order to test the hypothesis that the reason
for decreased incorporation of [1*C]ethanolamine into

PE lay in the production of CDP-ethanolamine rather
than in the diacylglycerol substrate, we took advantage
of differences in the synthetic pathways of alkyl, acyl-
and diacyl-PE. Synthesis of alkyl, acyl-PE (plasmalogen-
PE), occurs via a peroxisomal pathway that begins with
the addition of a long-chain fatty alcohol at the sn-1 po-
sition of dihydroxyacetone-P (Fig. 6) (21). The sn-2 po-
sition of alkyl-DHAP is then reduced and acylated and
the phosphate is hydrolyzed to form an sn-1-alkyl,2-
acyl-diacylglycerol analog. Microsomal DEPT then cata-
lyzes the addition of phosphoethanolamine from CDP-
ethanolamine. Finally, the alkyl-1-enyl moiety is formed
by a specific 1-alkyl-2-acyl-sn-glycero-3-phosphoethano-
lamine Al-desaturase. Because alkyl, acyl-PE cannot be
synthesized directly from either diacylglycerol or diacyl-
PE, decreased incorporation of ['#C]ethanolamine
into both PE and plasmalogen-PE would indicate a de-
fect in the production of CDP-ethanolamine, the com-
mon co-substrate, rather than a defect involving the
amount of diacylglycerol available for diacyl-PE synthe-
sis. In order to determine whether [14C]ethanolamine
incorporation into both plasmalogen-PE and diacyl-PE
decreased similarly in NLSD cells, we determined the

choline
CK
TAG
P-choline
DGAT lCT

N

ACH glycerol-3-P CDP-choline
¥ N PAP ! DCPT
FA sl acyl-CoA \ = PA = DAG PC
Acs DEPT N
d S PS
ET -
P-ethanolamine ----------- » CDP oo
A \11 ethanolamine .
ethanolamine Pl PE Sphingomyelin
l‘.‘
\ DEPT
DHAP =>—> alkyl, acyl-glycerol - em > alkyl, acyl-PE -----= > plasmalogen-PE

Fig. 6. Abnormal glycerolipid metabolism in NLSD.

Synthesis and degradation of all phospholipids ex-

cept PE is increased. The decreases in PE and plasmalogen-PE arise from a lack of availability of CDP-eth-
anolamine, not DAG. TAG lipolysis is normal but the DAG released is primarily used for TAG resynthesis
rather than for synthesis of phospholipids. ACS, acyl-CoA synthetase; ACH, acyl-CoA hydrolase; CK, cho-
line kinase; CT, CTP:choline cytidylyltransferase; DGAT, diacylglycerol acyltransferase; DHAP, dihydroxy-
acetone-P; DCPT, diacylglycerol cholinephosphotransferase; DEPT, diacylglycerol ethanolaminephospho-

transferase; ET, CTP:ethanolamine cytidylyltransfe

rase; FA, fatty acid; PA, phosphatidic acid; PAP,

phosphatidate phosphohydrolase; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phos-
phatidylinositol; PS, phosphatidylserine; TAG, triacylglycerol.
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amount of plasmalogen produced during a 2-h incuba-
tion with [*4C]ethanolamine. [**C]plasmalogens formed
22% of total ethanolamine phospholipid in both NLSD
and control cells, and NLSD cells showed a similar (75%)
decrease in [1*C]ethanolamine incorporation into both
PE fractions. These data indicate that the decreased PE
synthesis in NLSD cells results from decreased produc-
tion of CDP-ethanolamine and that the pathway from
glycerol-3-P is affected only indirectly (Fig. 6).

To determine the effect of a choline- and ethanol-
amine-deficient media on PC and PE synthesis, we la-
beled cells with [14C]choline or [14C]ethanolamine in
RPMI 1640 media which contains no choline or etha-
nolamine. As was observed when cells were labeled in
10% FBS, EMEM, both NLSD and control cells labeled
for 2 h with [**C]choline produced only PC (98% of to-
tal radiolabeled lipids). However, when cells were incu-
bated with [3H]ethanolamine in choline- and ethanol-
amine-deficient media, the labeled lipids were 90% PE,
6-7% PC, and about 2% sphingomyelin (data not
shown). In the choline- and ethanolamine-deficient
media, as in the sufficient media, [14C]choline incorpo-
ration into PC in NLSD cells increased 25%, whereas
[t4C]ethanolamine incorporation into PE formation
was 75% lower than in the control cells. Thus, insuffi-
cient choline and ethanolamine appears to further
modify phospholipid synthesis in NLSD cells by de-
creasing both the enhanced PC formation as well as the
already decreased synthesis of PE.

Glycerolipid synthetic enzyme activities are similar
in NLSD and control cells

Because NLSD cells show increased incorporation of
oleate and glycerol into TAG and PC and decreased in-
corporation into PE, we measured the specific activities
of several relevant enzymes in the TAG, PC, and PE

pathways (Table 2). The two cell lines had similar acyl-
CoA synthetase and DGAT specific activities, in agree-
ment with a previous report (22). The activity of acyl-
CoA hydrolase from NLSD cells was also similar to that
of the control cells. DCPT and DEPT specific activities
were similar in particulate fractions from NLSD and
control fibroblasts, as were the rate-limiting enzymes in
PC and PE formation, CTP:choline cytidylyltransferase
and CTP:ethanolamine cytidylyltransferase, respec-
tively. Choline kinase activity in NLSD cells was also
similar to that of controls.

Metabolism of [*“C]choline in NLSD and control cells
during a chase

Because the rate of PC synthesis might be modified
by the pool size of the water-soluble precursors of the
CDP-choline pathway, we labeled cells for 24 h with 50
um [methyl-1*C]choline. As observed in 2 h incuba-
tions, the incorporation of [1C]choline into total
phospholipid was 2-fold higher in NLSD cells than in
controls (Fig. 7). After 24 h of labeling, more than 90%
of the choline-labeled phospholipid was PC; the re-
mainder was sphingomyelin. During the first 6 h of a
chase with unlabeled media, the incorporation of
[*4C]choline into PC increased in both cell lines. How-
ever during most of the chase, the PC fraction in both
cell lines plateaued, while sphingomyelin labeling contin-
ued to increase (Fig. 7, inset), consistent with increased
PC synthesis and its precursor—product relationship with
sphingomyelin.

After the 24-h labeling period, NLSD cells contained
almost twice as much [*4C]choline water-soluble metab-
olites as did control cells (Fig. 8A). Most of the label
was released into the media during the chase period.
Phosphocholine was the major intracellular metabolite
(>95%) labeled with choline. A comparatively small

TABLE 2. Specific activities of enzymes of complex lipid metabolism

Enzyme

Control NLSD

Diacylglycerol phosphoethanolamine transferase (DEPT)

Diacylglycerol phosphocholine transferase (DCPT)
CTP:phosphocholine cytidylyltransferase (CT)
Cytosolic
Microsomal
CTP:phosphoethanolamine cytidylyltransferase (ET)
Choline kinase
Acyl-CoA hydrolase
Acyl-CoA synthetase
Substrate C18:1
Substrate C16:0
Phosphatidate phosphohydrolase (microsomal)
Diacylglycerol acyltransferase (DGAT)

nmol/mg protein/min

0.18 0.16
0.31 0.31
2.87 3.54
1.20 1.40
0.52 0.52
1.03 1.15
16.4 151
091 0.82
0.31 0.35
1.13 1.2
0.45 0.52

Cytosolic or total particulate protein from four to six 150-mm dishes was prepared and assayed for enzyme
activities as described in Experimental Procedures. Activities were assayed at three different protein concentra-

tions and individual results varied by less than 15%.
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Fig. 7. Incorporation of [**C]choline into PC and sphingomye-
lin, and of [**C]ethanolamine into PE during a 24-h chase. Con-
trol and NLSD fibroblasts were incubated for 24 h with 50 pum
[*4C]choline or 50 pm [**C]ethanolamine in 10% FBS, EMEM.
Residual label was removed and the cells were chased for up to 24
hin 10% FBS, EMEM. Lipids were extracted and chromato-
graphed as described in Experimental Procedures. Labels: PC
(triangles), PE (squares) and sphingomyelin (triangles-inset)
from control (open symbols-solid lines) and NLSD (closed sym-
bols-dashed lines). The figure shows determinations from dupli-
cate 100-mm dishes.

amount of CDP-choline was present (Fig. 8B). During
the chase, there was a massive loss of intracellular
[*4C]phosphocholine, the only water-soluble com-
pound present. During the first 6 h of chase, a signifi-
cant amount of phosphocholine (about 50% of the re-
leased metabolites) was used for PC synthesis in both
cell lines (Fig. 7). However, the cellular concentration
of phosphocholine in NLSD cells was 2-fold greater
than in control cells, except at 24 h when it was 30%
greater. A very small amount of free [*4C]choline was
present in cells at the end of the labeling period. Al-
though this [4C]choline pool was 3.7-fold higher in
the NLSD cells (85 vs. 317 dpm/p.g DNA), it was almost
undetectable in both cell lines by the third hour of the
chase. The very low amount of labeled CDP-choline
present did not change during the chase (Fig. 8B,
inset), and no differences in [1C]CDP-choline were
observed in the two cell lines.

Metabolism of [1#C]ethanolamine in NLSD
and control cells during a chase

In order to examine the metabolism of PE during a
similar chase, we labeled the intracellular ethanola-
mine pool for 24 h. As had been previously observed
during 2-h incubations (Fig. 5), after a 24-h incubation
with 50 um [*C]ethanolamine, incorporation into
[14C]PE was about 25% lower in the NLSD cells than in
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Fig. 8. Recycling of phosphocholine pools after a 24-h incuba-
tion with [**C]choline. Control and NLSD cells were treated as
described in Fig. 7. Metabolites were separated as described in Ex-
perimental Procedures. A) [**C]choline incorporated into cell
(squares) and media (circles) total aqueous metabolites; (B)
[**C]phosphocholine (squares) and [1*C]CDP-choline (circles)
(inset) in control (open symbols-solid lines) and NLSD (closed
symbols-dashed lines) cells. The figure shows determinations
from duplicate 100-mm dishes.

control cells (Fig. 5). Incorporation into PE, the only
labeled lipid formed, continued to increase for 6 h dur-
ing the chase in both cell lines and then to plateau.
The total amount of water-soluble metabolites la-
beled with ethanolamine was only 10% increased in
NLSD cells at the end of the labeling period. As with
the choline metabolites, most of the ['*C]ethanola-
mine label was released into the media as phosphoetha-
nolamine during the chase (Fig. 9A). No difference was
observed between NLSD and control fibroblasts. Phos-
phoethanolamine formed more than >90% of the
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Fig. 9. Recycling of phosphoethanolamine pools after a 24-h in-
cubation with [4C]ethanolamine. Normal and NLSD fibroblasts
were labeled for 24 h with 50 um [**C]ethanolamine in 10% FBS,
EMEM. Residual label was removed and the cells were chased with
10% FBS, EMEM. Metabolites were separated as described in Ex-
perimental Procedures. A) [14C]ethanolamine incorporated into
cell (squares) and media (circles) aqueous- and lipid-soluble me-
tabolites; (B) [*C]phosphoethanolamine and [**C]CDP-ethano-
lamine (inset) in control (open symbols-solid lines) and NLSD
(closed symbols-dashed lines) cells. The figure shows determina-
tions from duplicate 100-mm dishes.

aqueous cell metabolites as well (Fig. 9B). During the
chase the amount of [“C]phosphoethanolamine was
always slightly higher in NLSD cells compared to con-
trol cells. Free [4C]ethanolamine could be detected in
cells only at the start of the chase, and was 20% higher
in the NLSD line (data not shown).

Cellular [**C]CDP-ethanolamine decreased 50%
during the first 6 h of the chase and then plateaued. At
every time point in the chase, NLSD cells contained
30-35% less [1*C]CDP-ethanolamine than did the con-

lgal and Coleman

trol cells (Fig. 9B, inset). This finding, together with
the presence of between 10 and 30% more [4C]phos-
phoethanolamine in NLSD cells at each time point (Fig.
7B), is consistent with the interpretation that the lower
PE synthesis by NLSD cells before and during the chase
results from decreased CDP-ethanolamine formation.
As had occurred with PC formation, about 30% of the
[*4C]phosphoethanolamine initially present was incor-
porated into PE during the first 6 h of the chase. At ev-
ery time point, however, the incorporation of [14C]eth-
anolamine into PE remained lower in NLSD fibroblasts
than in controls (Fig. 5).

DISCUSSION

PC synthesis and turnover

Studies with labeled oleate, glycerol, and choline all
indicate that the rate of de novo PC synthesis is in-
creased in NLSD cells, but that there is no net PC accu-
mulation (Table 1). These data are consistent with an
increased rate of phospholipid turnover in NLSD cells.
Although NLSD cells from our patient and others are
able to maintain a normal long-term precursor incor-
poration into phospholipid (2) and normal phospho-
lipid composition (22), the secondary result of the
increased turnover rates appears to be that TAG stores
are not readily recycled to phospholipid.

The presence of higher amounts of [14C]choline and
[*4C]phosphocholine, as well as the low and steady
CDP-choline labeling in non-oleate-treated NLSD cells,
compared to controls, suggest that a high flux of water-
soluble choline metabolites is a primary cause for the
increased rate of PC synthesis. Despite this higher basal
rate of PC synthesis in NLSD cells, the rate of incorpo-
ration of [4C]choline into PC in both control and
NLSD cells could be further increased when added
fatty acid was present in the media, suggesting that CT,
the rate-limiting step of PC synthesis, was not fully acti-
vated. Further, the increase in PC synthesis by NLSD
cells cannot be explained by an increased specific activ-
ity of CT because its specific activity in both cytosol and
membrane fractions was equivalent to that of control
cells. The comparable CT specific activities in NLSD
and control fibroblasts also rule out an underlying cel-
lular increase of DAG or fatty acid concentration.2 The
constitutively high rate of PC synthesis in NLSD cells
might result from the presence of increased phospho-
choline derived from rapid PC turnover (Figs. 5, 8). In
any case, the over-synthesis and increased turnover of
PC is likely to be a secondary problem, related indi-
rectly to the underlying NLSD defect.
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Increased PC turnover is a feature of
several other cell lines

In ras-activated C3H10T Y, cells (16) and oocytes
(23), and in NIH 3T3 cells (24) the rate of PC turnover
is increased and PC content is decreased compared to
non-transfected cells. The increased phosphocholine
levels observed in these cells appear to result from an
increase in choline kinase (16, 24). Although CT spe-
cific activity is decreased in C3H10T %, cells, calcula-
tions indicated that the rate of PC synthesis is increased
and that label arises from both added label in the me-
dia and reuse of [3H]choline-containing glycerolipid
(16). In rastransfected HaCaT human keratinocytes,
elevated PC formation from [**C]choline is accompa-
nied by increases of choline uptake into cells and CT
activity (without increased cellular diacylglycerol lev-
els), but choline kinase activity is unchanged (18). In
HelLa cells after stimulation with EGF or insulin, more
labeled choline is incorporated into PC, as a result of
increases in choline kinase, glycerol-3-P acyltransferase,
and an expanded phosphocholine pool (25). Thus, it
appears that increases in PC synthesis can be produced
via several different mechanisms. Of interest is the find-
ing that the PE content of ras-activated cells is un-
changed (16) though both phosphocholine and phos-
phoethanolamine are markedly elevated (16, 23). PE
and TAG synthesis from labeled precursors was not
measured in any of these cell models.

Even though NLSD cells normalized the amount of
[14C]oleate and [3H]glycerol incorporated into PC by
24 h (Figs. 2A, 4A), a 24-h incubation with [**C]choline
continued to show a 2-fold increase in PC labeling com-
pared to control cells (Fig. 7). The similar increase in
[*4C]choline-labeled sphingomyelin in NLSD cells (Fig.
7, inset) may have resulted from the increased rate of
PC synthesis, as the primary route for sphingomyelin
synthesis occurs via the transfer of phosphocholine
from PC to ceramide (26, 27). Increased [1“C]oleate-la-
beled sphingomyelin formation was also observed (Fig.
1D), and remained 16% higher in NLSD cells during a
24-h chase.

These studies clearly indicate that NLSD fibroblasts
have an increased rate of TAG and PC synthesis, rapid PC
turnover, and a decreased rate of PE synthesis (Fig. 6). De-
spite these metabolic alterations, NLSD cells are still able
to maintain a normal content of each phospholipid spe-
cies. Agents that increase PC synthesis, like oleic acid (17),
ras-oncogene (16), diacylglycerol (28), or the over-expres-
sion of CT in cultured cells (29), also increase the rate of
PC degradation. Thus, in several experimental models in
which PC synthesis is stimulated, the cellular concentra-
tion of PC remains virtually unchanged, indicating, as in
NLSD cells, a compensatory increase in degradation.
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PE synthesis and turnover

The decreased rate of PE synthesis via the CDP-
ethanolamine pathway cannot be explained by a de-
crease in the availability of ethanolamine. If the cell PE
pool had been low, the 14C-label would have been di-
luted into a smaller endogenous pool in the NLSD cells
compared to control cells, and one would have ob-
served increased, rather than decreased, labeling with
[*4C]ethanolamine. Further, adding 100 um ethanol-
amine to NLSD cells did not alter TAG or phospholipid
turnover (R. A. Igal and R. A. Coleman, unpublished
data). Thus, no evidence exists in NLSD cells for a pri-
mary block in sphingolipid degradation, the primary
cellular source of ethanolamine (30). The observation
that NLSD fibroblast PE content is normal might be ex-
plained by either a decreased rate of PE turnover or by
the increased rate of PS synthesis (Figs. 2B and 4B),
which could provide an alternative source of PE by de-
carboxylation. In baby hamster kidney cells, decarboxy-
lation of PS is a major source of PE (31).

Like the present study, the report by Williams et al.
(22) on NLSD fibroblasts from two members of a family
unrelated to our patient showed that the rate of incor-
poration of both [**C]acetate and [4C]oleic acid into
complex lipids was higher in NLSD cells. However, un-
like the present study, which shows a decrease in the
rate of de novo PE synthesis, Williams et al. (22) re-
ported an increase in oleate-labeled PE. These differ-
ences might result if the two NLSD families had different,
but related genetic defects. A more likely reason is that
Williams et al. (22) used only tracer quantities of [14C]
oleate. Under these conditions label is incorporated pri-
marily into phospholipid, whereas when high concentra-
tions of fatty acid are present as in the present study, label
is incorporated into both polar and neutral lipids.

The present data narrow the range of possible de-
fects in NLSD. The underlying problem is not limited
to the recycling of TAG-derived DAG to phospholipid
synthesis, but, instead, is the result of profound alter-
ations in glycerolipid metabolism that include an in-
crease in the rate of PC turnover. The increased synthe-
sis of PC could underlie the increase in sphingomyelin
synthesis directly and the increase in PS synthesis by
base exchange. One cannot, however, relate the in-
creased rate of Pl synthesis directly to changes in PC
metabolism as Pl and PC are not synthesized via a com-
mon intermediate (Fig. 6). Changes in PC turnover
also do not explain the decreased rate of PE synthesis.
Not only are cellular DAG concentrations normal, but
the equivalent decreases in plasmalogen-PE and diacyl-
PE point to a problem in CDP-ethanolamine availabil-
ity. In NLSD cells it appears that there is abnormal reg-
ulation of the major phospholipids via a common or
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linked signaling pathway and that a primary signaling
defect may increase the activities of phospholipases
specific for PC and PI. The cardinal NLSD increase in
cellular TAG appears to be a secondary manifestation
of profound alterations in phospholipid metabolism.5g
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